Some notes concerning Riemannian metrics of Cheeger Gromoll type
نویسندگان
چکیده
منابع مشابه
Gromoll type metrics on the tangent bundle
In this paper we study a Riemanian metric on the tangent bundle T (M) of a Riemannian manifold M which generalizes the Cheeger Gromoll metric and a compatible almost complex structure which together with the metric confers to T (M) a structure of locally conformal almost Kählerian manifold. We found conditions under which T (M) is almost Kählerian, locally conformal Kählerian or Kählerian or wh...
متن کاملON THE LIFTS OF SEMI-RIEMANNIAN METRICS
In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...
متن کاملSobolev Metrics on the Riemannian Manifold of All Riemannian Metrics
On the manifold M(M) of all Riemannian metrics on a compact manifold M one can consider the natural L-metric as decribed first by [10]. In this paper we consider variants of this metric which in general are of higher order. We derive the geodesic equations, we show that they are well-posed under some conditions and induce a locally diffeomorphic geodesic exponential mapping. We give a condition...
متن کاملH-type Riemannian Metrics on the Space of Planar Curves
Michor and Mumford have shown that the distances between planar curves in the simplest metric (not involving derivatives) are identically zero. We derive geodesic equations and a formula for sectional curvature for conformally equivalent metrics. We show if the conformal factor depends only on the length of the curve, the metric behaves like an L metric, the sectional curvature is not bounded f...
متن کاملA New Proof of the Cheeger-gromoll Soul Conjecture and the Takeuchi Theorem
Let Mn be a complete, non-compact Riemannian manifold with nonnegative sectional curvature. We derive a new broken flat strip theorem associated with the Cheeger-Gromoll convex exhaustion, in the case when Mn is not diffeomorphic to Rn. This leads to a new proof of the Cheeger-Gromoll soul conjecture without using Perelman’s flat strip theorem. Using the Cheeger-Gromoll inward equidistant evolu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2012
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2012.06.011